Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system.
نویسندگان
چکیده
The proper functioning of any biological system depends on the coordinated activity of its components. Regulation at the genetic level is, in many cases, effective in determining the cellular levels of system components. However, in cases where regulation at the genetic level is insufficient for attaining harmonic system function, posttranslational regulatory mechanisms are often used. Here, we uncover posttranslational regulatory mechanisms in the prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS), the bacterial equivalent of the eukaryotic ubiquitin-proteasome system. Pup, a ubiquitin analog, is conjugated to proteins through the activities of two enzymes, Dop (deamidase of Pup) and PafA (proteasome accessory factor A), the Pup ligase. As Dop also catalyzes depupylation, it was unclear how PPS function could be maintained without Dop and PafA canceling the activity of the other, and how the two activities of Dop are balanced. We report that tight Pup binding and the limited degree of Dop interaction with high-molecular-weight pupylated proteins results in preferred Pup deamidation over protein depupylation by this enzyme. Under starvation conditions, when accelerated protein pupylation is required, this bias is intensified by depletion of free Dop molecules, thereby minimizing the chance of depupylation. We also find that, in contrast to Dop, PafA presents a distinct preference for high-molecular-weight protein substrates. As such, PafA and Dop act in concert, rather than canceling each other's activity, to generate a high-molecular-weight pupylome. This bias in pupylome molecular weight distribution is consistent with the proposed nutritional role of the PPS under starvation conditions.
منابع مشابه
Genetic and Proteomic Analyses of Pupylation in Streptomyces coelicolor.
UNLABELLED Pupylation is a posttranslational modification peculiar to actinobacteria wherein proteins are covalently modified with a small protein called the prokaryotic ubiquitin-like protein (Pup). Like ubiquitination in eukaryotes, this phenomenon has been associated with proteasome-mediated protein degradation in mycobacteria. Here, we report studies of pupylation in a streptomycete that is...
متن کاملProkaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates.
Prokaryotic ubiquitin-like protein (Pup) is a posttranslational modifier that targets proteins for degradation by the mycobacterial proteasome. We show that the disordered amino terminus of Pup is required for degradation, while the helical carboxyl terminus mediates its attachment to proteins. Thus, Pup has distinct regions that either interact with pupylation enzymes or initiate proteasomal d...
متن کاملFate of Pup inside the Mycobacterium Proteasome Studied by in-Cell NMR
The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE, targets proteins for proteasome-mediated degradation. We demonstrate that Pup-GGQ, a precursor of Pup-GGE, is not a substrate for proteasomal degradation. Using STINT-NMR, an in-cell NMR technique, we studied the interactio...
متن کاملMycobacterium tuberculosis Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates
The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M. tuberculosis, an observation that led us to hypothesize that PafA may need alternative sources of Pup. He...
متن کاملThe Mechanism of Mycobacterium smegmatis PafA Self-Pupylation
PafA, the prokaryotic ubiquitin-like protein (Pup) ligase, catalyzes the Pup modification of bacterial proteins and targets the substrates for proteasomal degradation. It has been reported that that M. smegmatis PafA can be poly-pupylated. In this study, the mechanism of PafA self-pupylation is explored. We found that K320 is the major target residue for the pupylation of PafA. During the self-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 12 شماره
صفحات -
تاریخ انتشار 2016